Pellans Sequence and Its Diophantine Triples
نویسندگان
چکیده
We introduce a novel fourth order linear recurrence sequence {Sn} using the two periodic binary recurrence. We call it “pellans sequence” and then we solve the system ab+ 1 = Sx, ac + 1 = Sy bc+ 1 = Sz where a < b < c are positive integers. Therefore, we extend the order of recurrence sequence for this variant diophantine equations by means of pellans sequence.
منابع مشابه
A Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$
In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.
متن کاملOn the number of Diophantine m-tuples
A set of m positive integers is called a Diophantine m-tuple if the product of any two of them is one less than a perfect square. It is known that there does not exist a Diophantine sextuple and that there are only finitely many Diophantine quintuples. On the other hand, there are infinitely many Diophantine m-tuples for m = 2, 3 and 4. In this paper, we derive asymptotic extimates for the numb...
متن کاملHigh Rank Elliptic Curves with Torsion Z/2z× Z/4z Induced by Diophantine Triples
We construct an elliptic curve over the eld of rational functions with torsion group Z/2Z × Z/4Z and rank equal to 4, and an elliptic curve over Q with the same torsion group and rank 9. Both results improve previous records for ranks of curves of this torsion group. They are obtained by considering elliptic curves induced by Diophantine triples.
متن کاملDiophantine m-tuples with elements in arithmetic progressions
In this paper, we consider the problem of existence of Diophantine m-tuples which are (not necessarily consecutive) elements of an arithmetic progression. We show that for n ≥ 3 there does not exist a Diophantine quintuple {a, b, c, d, e} such that a ≡ b ≡ c ≡ d ≡ e (mod n). On the other hand, for any positive integer n there exist infinitely many Diophantine triples {a, b, c} such that a ≡ b ≡...
متن کاملStrong Diophantine Triples
We prove that there exist infinitely many triples a, b, c of non-zero rationals with the property that a + 1, b + 1, c + 1, ab + 1, ac + 1 and bc + 1 are perfect squares.
متن کامل